The University of Texas at Austin
Electrical and Computer
Engineering
Cockrell School of Engineering

Fall 2021

ADVANCED TOPICS IN
COMPUTER VISION

Atlas Wang
Assistant Professor, The University of Texas at Austin

Visual Informatics Group@UT Austin
https://vita-group.github.io/




Deep Learning on the Edge

* Deploying CNNs on resource-constrained platforms/at the edge

* Two Scenarios: Inference (pre-trained model), and Training (online adaptation)

Real-Time Machine Learning (RTML)

PROGRAM SOLICITATION
NSF 19-566

National Science Foundation

Directorate for Computer and Information Science and Engineering
Division of Computing and Communication Foundations

Directorate for Engineering
Division of Electrical, Communications and Cyber Systems

RTML Program goal: “for next-generation co-design of RTML algorithms and hardware, with the principal focus on
developing novel hardware architectures and learning algorithms in which all stages of training (including
incremental training, hyperparameter estimation, and deployment) can be performed in real time.”



Deep Learning on the Edge

Three Top Concerns:
e Storage and Memory
* Speed or Latency
* Energy Efficiency
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The three goals all pursue “light weight”
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* Energy efficiency of a brain is 100x better than S _
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* Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional Neural Networks, IEEE ISSCC 2016



Model Compression

Training Phase:

o The easiest way to extract a lot of knowledge from the training data is to learn many different
models in parallel.

o 3B: Big Data, Big Model, Big Ensemble
o Imagenet: 1.2 million pictures in 1,000 categories.
o AlexNet: ~ 240Mb, VGG16: ~550Mb
Testing Phase:
o Want small and specialist models.

o  Minimize the amount of computation and the memory footprint.
o Real time prediction
O

Even able to run on mobile devices.



Two Main Streams

* “Transfer”: How to transfer knowledge from big general model (teacher) to small
specialist models (student)?
* Example: “Distilling the Knowledge in a Neural Network”, G. Hinton et. al., 2015

* “Compress”: How to reduce the size of the same model, during or after training,
without losing much accuracy.

* Example: “Deep Compression: Compressing Deep Neural Networks with Pruning, Trained
Quantization and Huffman Coding”, S. Han et. al., 2016

* Comparison: Knowledge Transfer provides a way to train a new small model
inheriting from big general models, while Deep Compression Directly does the

surgery on big models, using a pipeline: pruning, quantization & Huffman coding.



Knowledge Transfer/“Distillation”: Main Idea

e Introduce “Soft ta rgets” as one e Hard Target: the ground truth label (one-hot vector)

way to transfer the knowledge  ® Soft Target:  exp(z/T) T is “temperature”, z is logit

from big models. 1T S ean(z;/T)

e Classifiers built from a softmax
function have a great deal

e More information in soft targets

cow dog cat car

more information contained in = : - o] original hard
them than just a classifier; iargeLs
: : cow dog cat car
* The correlations |.n the softmax 3 : o isne o
outputs are very informative. . B - 005] of ensemble

Hinton’s Observation: If we can extract the knowledge from the data using very big models or
ensembles of models, it is quite easy to distill most of it into a much smaller model for deployment.

More follow-up observations: teachers can be weak, or even the same as student ...
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Deep

Compression
Main Idea (ii)

Retrain to Recover Accuracy

-
Train Connectivity
L
L 2
-

Prune Connections
. _/
L 2

-
Train Weights
\

-O-L2 regularization w/o retrain
L1 regularization w/ retrain
~®-| 2 regularization w/ iterative prune and retrain

~4-L1 regularization w/o retrain
“O-L2 regularization w/ retrain

40% 50% 60% 70%

80% 90% 100%

Parametes Pruned Away

Network pruning can save 9x to 13x parameters without drop in accuracy



Weight Sharing (Trained Quantization)

weights cluster index fine-tuned
(32 bit float) (2 bit uint) centroids centroids

-0.98| 1.48 | 0.09 3|10 2 1 3:- .

Dee p 0.05 |-0.14 | -1.08 custer | 1| 1 | 0 | 3| 2fes0] . [148
Compression: asn88] o 1w~ | o |5 | 1| o | e l a0

Main Idea (iii) — LT [T

gradient

roup by 0.03 -0.02 reduce

=

g
E
Ik
g
:
8

-0.02 -0.01|-0.02 | -0.01

g

Figure 3: Weight sharing by scalar quantization (top) and centroids fine-tuning (bottom)



Huffman Coding

Deep

Quantization: less precision Huffman Encoding
. Pruning: less quantty
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* Determining low-saliency parameters, given a pre-trained network

* Follows the framework proposed by LeCun et al. (1990):

Train Connectivity

1. Train a deep model until convergence % b \
2. Delete “unimportant” connections w.r.t. a certain criteria k""‘“’ °°""°°"°"‘J
M ore A b out 3. Re-train the network : T y

4. Iterate to step 2, or stop | Meamegos

* Defining which connection is unimportant can vary
* Weight magnitudes (L?, L}, ...)

before pruning after pruning

* Mean activation [Molchanov et al., 2016]
Avg. % of Zeros (APoZ) [Hu et al., 2016]
Low entropy activation [Luo et al., 2017]
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Human brains are also using pruning schemes as well
* Synaptic pruning removes redundant synapses in the brain during lifetime

At birth

Human Brain

Expenence-dependent synapse formation
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Network pruning perturbs weights W by zeroing some of them

How the loss L would be changed when W is perturbed?

OBD approximates L by the 2" order Taylor series:

Optimal Brain T DECO S S S i vt g0
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Damage (OBD)

1st order 2nd§rder

/

Problem: Computing H = (aw‘?gw,) is usually intractable
PO i

* Requires 0(n?) on # weights

* Neural networks usually have enormous number of weights

- e.g. AlexNet: 60M parameters = H consists ~ 3.6 x 101 elements



Problem: Computing H = (a ag ) is usually intractable
WiOWi /4,5

Two additional assumptions for tractability

1. Diagonal approximation: H = L _ f ]

8wiawj

2. Extremal assumption: 9 =0 Vi

* W would be in a local minima if it’s pre-trained

Optimal Brain

Damage (OBD)

1 0°L . .5 3
* Now we get: 0L ~ 5 aw-Qéwi + O(||6W||?)
* It only needs diag(H) := (%)

diag(H) can be computed in 0(n), allowing a backprop-like algorithm
* For details, see [LeCun et al., 1987]



How the loss L would be changed when W is perturbed?

1 ’L 1
L(6W) ~ 3 gw.25wi2 = Z §hii5wz-2

1
The saliency for each weight = s; == §hii|wz’|2 s; = |w|

/

OBD shows robustness on pruning compared to magnitude-based deletion

Optimal Brain

After re-training, the original test accuracy is recovered

Damage (OBD)
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Structured

Sparsity

“Un-structured” weight-level pruning may not engage a practical speed-up

* Despite of extremely high sparsity, actual speed-ups in GPU is limited

sparsity = percentage of zeros
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* Structured sparsity can be induced by adding group- Iasso regularization

min £(W +A§:R (W), }Hmﬁmz
W
=1
* Filter-wise and channel-wise: #filters i channels
l l
SR Ry(W®) = SV W+ RS W,
S p a rS |ty Table 1: Results after penalizing unimportant filters and channels in LeNert
LeNet # Error  Filter#° Channel #° FLOP * Speedup *
| (baseline) 0.9% 20—50 1—20 100%—100%  1.00x—1.00x
2 0.8% 5—19 1—4 25%—71.6% 1.64x—35.23 %
3 1.0% 3—12 1—3 15%—3.6% 1.99x—7.44 x

S
*In the order of convI—conv2

Lener 1 G (5 50 [ 1 P ) 0 0 S R I 9 S 1
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Fewer but smoother feature extractors



The Lottery Ticket Hypothesis. A randomly-initialized, dense neural network contains a subnet-
work that is initialized such that—when trained in isolation—it can match the test accuracy of the
original network after training for at most the same number of iterations.

Lottery

TI C k et Original network Winning Ticket
Hypothesis

* Winning Ticket gives
+ Better or same results
« Shorter or same training time
» Notably fewer parameters
+ Is trainable from the beginning

Prune p%

—> Mask m

f(x, m © 6,)
f(x; 6,)




Searching for Tickets: lterative Magnitude Pruning

W

Lottery
Ticket

Hypothesis

m ) ® Wy m™ o W(n+1) m™t) o W(n+1)

AT R

Iterate..
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* Neural networks can be even binarized (+1 or -1)
* DNNs trained to use binary weights and binary activations

* Expensive 32-bit MAC (Multiply-ACcumulate) = Cheap 1-bit XNOR-Count

* “MAC == XNOR-Count”: when the weights and activations are +1 \
# 1s in bits

More About

Binarized weights

Quantization




* Idea: Training real-valued nets (W) treating binarization (W},) as noise
* Training W, is done by stochastic gradient descent

* Binarization (W,. - W),) occurs for each forward propagation
* On each of weights: W, = sign(WW,.)
« ... also on each activation: a;, = sign(a,)

Binary

N eura | * Gradients for W, is estimated from ;—w% [Bengio et al., 2013]
* “Straight-through estimator”: Ignore the binarization during backward!
Networks N

oW, aWbIIerﬁl

oL __ 8L1
da,  Oayp la.|<1

* Cancelling gradients for better performance
* When the value is too large




* BNN yields 32x less memory compared to the baseline 32-bit DNNs
* ... also expected to reduce energy consumption drastically

» 23x faster on kernel execution times

B| Nna ry * BNN allows us to use XNOR kernels _ N T
* 3.4x faster than cuBLAS :
Neural 5
Operation MUL ADD
N etWO r kS 8bit Integer 0.2pJ 0.03p] :
32bit Integer 3.1pJ  0.1p]
16bit Floating Point  1.1pJ  0.4p] . .
32tbit Floating Point  3.7pJ  0.9pJ

W BASELINE KERNEL m CUBLAS/THEANO XNOR KERNEL

* BNN achieves comparable error rates over existing DNNs

MATRIX MULT. (5 MNIST MLP | MLP TEST ERROR (%)
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Real-World Efficient ML: Way to Go

* Jointly utilizing several compression means

* Also, can choose efficient “by-design” models (MobileNets, or even non-deep
models, etc.)

* Channel pruning is in fact very similar to NAS
* Data processing is often a key concern, maybe more important
* Hardware co-design is another key concern
* Resource constraints & user demands often change over time

* From single task to multi-task and lifelong learning ...



Demo: Energy-Efficient UAV-Based Text Spotting System

* Task: accurate detecting signs and recognizing
texts in the video, captured by an unmanned aerial
vehicle (UAV), with minimal energy cost as
possible (Hardware: Raspberry Pi 3B+)

 Our solution won 2" prize in the high-visibility
IEEE CVPR 2020 Low-Power Computer Vision
(LPCV) Challenge, among 11 university & company
teams that submitted 84 independent solutions.

(@ Only homogeneous regions

=)

LLSL | e

@) Unlikely with texts (3 Poor-quality texts FEE (@ High-quality,
r— - — likely with texts

Purdue
generated 178
patents!

Processed by OCR

Dropped Dropped

[EFT
¥



https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/

Energy-Efficient Training: Prevailing Demands
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 Shifting model training from the cloud to the edge

* Facilitating personalization; saving bandwith/communication energy; protecting privacy

* Deep learning has a terrible carbon footprint
* “Training a single Al model can emit as much carbon as five cars in their lifetimes”, MIT Tech Review



On-Device Training (Adaptation) is on Growing Demand

E[ «‘Q’D

Train on collected datasets Deploy in real environments

=2

Directly deploy, i.e., without adaptation

Train on collected datasets Deploy in real environments



Problem Setting

* We consider the most basic CNN training, assuming both the model
structure and the dataset to be pre-given, training from scratch

* Trim down the total energy cost for in-situ, resource-constrained training.
* not usually the realistic loT case, but address it as a starting point

* Many existing works are on accelerated CNN training

* ... they mostly focus on reducing the total in resource-rich
settings, such as by distributed training in large-scale GPU clusters



From Inference to Training: Lessons and Challenges

* Training v.s. Inference: one-pass Vv.s. iterative

* Lessons that we learned from Inference:
* Model parameters are not born equally, and many redundancies do exist
* Know your specific goal: saving memory, latency and energy are often not aligned
* To achieve energy goal, realistic energy models and/or hardware measurements are very helpful
e Consider a more “end-to-end” effort beyond just the model itself (data, hardware, architecture...)

* New Challenges posed for Training:
» Saving per-sample (mini-batch) complexity (both feed-forward and backward)

* The empirical convergence (how many iterations needed) matters more than per-MB complexity
» Data access/movement bottlenecks are (even more) crucial



“Three-Pronged” Approach:

Data-Level: stochastic mini-batch
dropping

Layer-Level: selective layer update

Bit-Level: predictive sign gradient
descent

Model-Level: SLU

Bit-level: PSG

m Accuracy (vs. Original One) | Energy Savings

Data-Level: SMD

CIFAR-10 MobileNetV2 92.06% (vs. 92.47%) 88%
ResNet-110 93.01% (vs. 93.57%) 83%
CIFAR-100 MobileNetV2 71.61% (vs. 71.91%) 88%
ResNet-110 71.63% (vs. 71.60%) 84%

Energy savings is quantified based on FPGA implementation



) EB-Train: Training via Early-Bird Lottery Ticket [ICLR'2020]

=%

Progressive Pruning and Training (e.g., [J. Frankle, ICLR 2019])

Trained Model

For the first time:

&7

100% training

Early-Bird Train (Proposed) 1. We discover the existence of Early-Bird (EB) Tickets

2.  We propose a detector of low cost to detect EB Tickets

5K ‘ ~ 3. We leverage the existence of EB Tickets to develop an

efficient training scheme

hv-2 v4
\ » 5.8X% - 10.7X% reduced training energy with a comparable or

10% - 20% training even better accuracy over the most competitive baseline ~ *’
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